Configuring Linux ‘pppd’ for a Skywire® 4G LTE CAT1 Verizon Over UART

NimbeLink Corp
Updated: December 2020
Table of Contents

1. Introduction
 1.1 Applies to the Following Part Numbers:
 1.2 Prerequisites
 1.3 Notes On Usage

2. PPP – 4G LTE CAT 1 Modem
 2.1 Overview
 2.2 Elevate to root
 2.3 Check for Updates
 2.4 Install the “ppp” Package
 2.5 Verify The Modem is Connected
 2.6 Write PPP Scripts
 2.7 Take Down the Ethernet Interface
 2.8 Bring Up the PPP Interface
 2.9 Troubleshooting
1. Introduction

1.1 Applies to the Following Part Numbers:

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Description</th>
<th>Carrier</th>
<th>Network Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>NL-SWDK</td>
<td>Skywire Development Kit</td>
<td>Any</td>
<td>Any</td>
</tr>
<tr>
<td>NL-AB-BBBC</td>
<td>Skywire BeagleBone Black Cape</td>
<td>Any</td>
<td>Any</td>
</tr>
<tr>
<td>NL-AB-MPCIE</td>
<td>Mini-PCI Express Adapter Board</td>
<td>Any</td>
<td>Any</td>
</tr>
<tr>
<td>NL-SW-LTE-GELS3</td>
<td>LTE CAT1, Verizon</td>
<td>Verizon</td>
<td>4G LTE</td>
</tr>
<tr>
<td>NL-SW-LTE-GELS3-B</td>
<td>LTE CAT1, Verizon</td>
<td>Verizon</td>
<td>4G LTE</td>
</tr>
<tr>
<td>NL-SW-LTE-GELS3-C</td>
<td>LTE CAT1, Verizon</td>
<td>Verizon</td>
<td>4G LTE</td>
</tr>
<tr>
<td>NL-SW-LTE-GELS3-D</td>
<td>LTE CAT1, Verizon</td>
<td>Verizon</td>
<td>4G LTE</td>
</tr>
<tr>
<td>NL-SIM-COM</td>
<td>3FF Commercial Temp Range SIM Card</td>
<td>Verizon</td>
<td>LTE</td>
</tr>
</tbody>
</table>

1.2 Prerequisites

This document assumes you have completed the initial setup of your modem and development kit. If you have not completed those steps, refer to the Skywire® Development Kit User Manual and complete the modem setup before proceeding.

Note: It is possible to leave network interfaces enabled on the Linux PC, while ensuring that the cellular data connection is the primary source of Internet connectivity. This involves replacing the default route in the kernel's IP routing table with the connection you want to use. However, these steps are not covered by this application note.

1.3 Notes On Usage

The CAT1 Skywire® modem can take 30-60 seconds to boot. Ensure that you wait at least this long before attempting to run the PPP scripts.

In addition, this process works when you bring up the PPP connection. However, if you try to bring down the PPP connection, and then try to bring up the connection again without power cycling the modem, it will not work. Thus, it is recommended that you power cycle the modem before you try to bring up your connection again.
2. PPP – 4G LTE CAT 1 Modem

2.1 Overview
This example has been tested on the following distributions of Linux:

- Ubuntu Linux 14.04 LTS
- Ubuntu Linux 16.04 LTS
- BeagleBone Black Debian 8.x

This example is written using Ubuntu 14.04 LTS.

2.2 Elevate to root
In order to make the changes necessary, it is necessary to login to the root account. To do so, type the following command into the Terminal:

$ sudo su

followed by the Enter key. You will be prompted to enter your password: enter it, followed by the Enter key.

2.3 Check for Updates
Make sure that your Ubuntu system is up to date using the following commands:

apt-get update
apt-get upgrade

2.4 Install the “ppp” Package
To install the ppp package, type the following command:

apt-get install ppp

2.5 Verify The Modem is Connected
To verify that our system can see the Skywire modem, type the following command:

lsusb

followed by the enter key, and you should have an entry similar to the one below:

Bus 003 Device 005: ID 0403:6001 Future Technology Devices International, Ltd FT232 Serial (UART)

If so, the modem is connected properly. If not, verify the modem is connected properly and run the command again.
2.6 Write PPP Scripts

We need to write two scripts for PPP to reference when initializing the connection.

Note: We have a GitHub page with the necessary PPP files available for customers to use located here:

https://github.com/NimbeLink/skywire-ppp-scripts

We highly recommend downloading that repo and following the instructions in the files related to your modem. The other recommended option is to click on the file you want and copy and paste directly from GitHub.

First, clone the repo and navigate to the cloned repo. Next, as superuser (root) copy the file:

```
vzw-GELS3
```

to:

```
/etc/ppp/peers/
```

or copy-and-paste the contents of:

```
vzw-GELS3
```

from the GitHub repo to

```
/etc/ppp/peers/vzw-GELS3
```

The contents of `vzw-GELS3` are shown below:
/dev/ttyUSB0
115200

pppd options
ddebug
hide-password
noauth
defaultroute
noipdefault
usepeerdns
local
updetect
ipcp-max-configure 20
ipcp-max-failure 20

pppd options
lcp-echo-interval 5
lcp-echo-failure 10

Logfile configuration log will be stored into ppp-logfile
logfile /etc/ppp/ppp-logfile
record /etc/ppp/ppp-dumplog

provider specific chat script for connection establishment
connect "/usr/sbin/chat -v -f /etc/ppp/peers/vzw-GELS3-chat"

Next, copy:

vzw-GELS3-chat
to:

/illegal/ppp/peers/
or copy-and-paste the contents of
vzw-GELS3-chat
from the GitHub repo to

/illegal/ppp/peers/vzw-GELS3-chat

Make sure to replace [apn] with your APN. If the device was activated on
go.nimbelink.com, the APN is:

NIMBLINK.GW12.VZWENTP
The contents of vzw-GELS3-chat are shown below:

```
  ATZ
SAY 'Setting APN\n'
OK 'AT+CGDCONT=3,"IPV4V6","[apn]"
SAY 'Dialing...'
OK 'ATD*99***3#'
CONNECT ''
```

2.7 Take Down the Ethernet Interface

To bring down the Ethernet connection, type the following command:

```
# ifconfig eth0 down
```

(Optional) To verify that the Ethernet connection is down, type:

```
# ifconfig
```

followed by the enter key. eth0 should not be listed.

2.8 Bring Up the PPP Interface

To enable the PPP interface, type the following commands:

```
# pon vzw-GELS3
```

followed by the enter key. After a few seconds, test the connection:

```
# ping -c 2 www.google.com
```

and you should receive a response similar to this:

```
PING www.google.com (216.58.216.196) 56(84) bytes of data.
64 bytes from ord31s21-in-f4.1e100.net (216.58.216.196): icmp_seq=1 ttl=50 time=47.8 ms
64 bytes from ord31s21-in-f4.1e100.net (216.58.216.196): icmp_seq=2 ttl=50 time=90.6 ms
--- www.google.com ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1001ms
rtt min/avg/max/mdev = 47.818/69.237/90.656/21.419 ms
```

This indicates that your PPP connection is up and connected to the network.

2.9 Troubleshooting

- If your PPP fails with the error 0x1 in Section 2.8, chances are your vzw-GELS3 file cannot see your vzw-GELS3-chat file. Ensure that the last part of line 3 of the vzw-GELS3 file:
has the same name as your `vzw-GELES3-chat` file. The tool `xxd` may be beneficial to ensure that there are no extra characters in the file and that the files are named the same:

```
$ xxd vzw-GELES3
```

If you are still having issues, rename the last part of the last line in the `vzw-GELES3` file to:

```
.../vzw
```

and rename `vzw-GELES3-chat` to `vzw` and try again.

- If your PPP fails with the error 0x3 in Section 2.8, you may have poor signal strength. Move the unit closer to a window for a better signal strength.

- If your PPP still fails with error 0x3 in Section 2.8, your APN may be incorrect. Verify that your APN is correct in your `vzw-GELES3-chat` file.

- You can see debug output of the PPP process in `/etc/ppp/ppp-logfile` and `/etc/ppp/ppp-dumplog`.

- If PPP still fails after the above troubleshooting steps, power cycle the modem and ensure you are waiting long enough before running the script.